Classification of Missense Mutations of Disease Genes.
نویسندگان
چکیده
Clinical management of individuals found to harbor a mutation at a known disease-susceptibility gene depends on accurate assessment of mutation-specific disease risk. For missense mutations (MMs)-mutations that lead to a single amino acid change in the protein coded by the gene-this poses a particularly challenging problem. Because it is not possible to predict the structural and functional changes to the protein product for a given amino acid substitution, and because functional assays are often not available, disease association must be inferred from data on individuals with the mutation. Inference is complicated by small sample sizes and by sampling mechanisms that bias toward individuals at high familial risk of disease. We propose a Bayesian hierarchical model to classify the disease association of MMs given pedigree data collected in the high-risk setting. The model's structure allows simultaneous characterization of multiple MMs. It uses a group of pedigrees identified through probands tested positive for known disease associated mutations and a group of test-negative pedigrees, both obtained from the same clinic, to calibrate classification and control for potential ascertainment bias. We apply this model to study MMs of breast-ovarian susceptibility genes BRCA1 and BRCA2, using data collected at the Duke University Medical Center in Durham, North Carolina.
منابع مشابه
Analysis of Missense Mutations of CX3CR1 Gene in Patients with Recurrent Pregnancy Loss Using Bioinformatics Tools
Introduction: Abortion is a common complication that refers to the early termination of pregnancy with the death of the fetus before the 20th week of pregnancy. Previous studies show that many genes are involved in this disease, including the CX3CR1 gene, which is one of the inflammatory response genes in the immune system. The pathogenicity of these variants was determined in this study using ...
متن کاملComputational approach towards identification of pathogenic missense mutations in AMELX gene and their possible association with amelogenesis imperfecta
Amelogenin gene (AMEL-X) encodes an enamel protein called amelogenin, which plays a vital role in tooth development. Any mutations in this gene or the associated pathway lead to developmental abnormalities of the tooth. The present study aims to analyze functional missense mutations in AMEL-X genes and derive an association with amelogenesis imperfecta. The information on miss...
متن کاملNovel Missense Mitochondrial ND4L Gene Mutations in Friedreich's Ataxia
Objective(s) The mitochondrial defects in Friedreich's ataxia have been reported in many researches. Mitochondrial DNA is one of the candidates for defects in mitochondrion, and complex I is the first and one of the largest catalytic complexes of oxidative phosphorylation (OXPHOS) system. Materials and Methods We searched the mitochondrial ND4L gene for mutations by TTGE and sequencing on 30...
متن کاملInvestigation of GDF9 and BMP15 Polymorphisms in Mehraban Sheep to Find the Missenses as Impact on Protein
Utilization of fecundity genes such as GDF9 and BMP15 can help improve reproductive traits in sheep breeding programme. To evaluate effects of missense mutations on protein function, the polymorphisms of GDF9 and BMP15 genes were screened in twelve mehraban sheep using DNA sequencing, followed by protein structure modeling. Six single nucleotide polymorphism (SNPs) known as FecG mutations (G1-G...
متن کاملScreening for Causative Mutations of Major Prolificacy Genes in Iranian Fat-Tailed Sheep
Objective The presence of different missense mutations in sheep breeds have shown that the bone morphogenetic protein receptor 1B (BMPR1B), bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) genes play a vital role in ovulation rate and prolificacy in ewes. Therefore, the present study investigates BMPR1B, BMP15 and GDF9 genes mutations in prolific ewes of Iranian ...
متن کاملExon Sequencing of PKD1 Gene in an Iranian Patient with Autosomal-Dominant Polycystic Kidney Disease
Introduction: Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common genetic kidney disorders with the incidence of 1 in 1,000 births. ADPKD is genetically heterogeneous with two genes identified: PKD1 (16p13.3, 46 exons) and PKD2 (4q21, 15 exons). Eighty five percent of the patients with ADPKD have at least one mutation in the PKD1 gene. Genetic studies have demonstrate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Statistical Association
دوره 100 شماره
صفحات -
تاریخ انتشار 2005